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It is shown that to each locally normal state of a boson system one can 
associate a point process that can be interpreted as the position distribution of 
the state. The point process contains all information one can get by position 
measurements and is determined by the latter. On the other hand, to each 
so-called Xc-point process Q we relate a locally normal state with position 
distribution Q. 
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1. I N T R O D U C T I O N  

The state of  a finite system of bosons  in Na is descr ibed  by a no rma l i zed  
posi t ive t race-class  o p e r a t o r  on the symmet r ic  F o c k  space over  Na. In  

o rde r  to charac te r ize  infinite systems one m a y  use posi t ive no rma l i zed  
l inear  funct ionals  co on a su i tab ly  chosen  C*-a lgebra  ~r of  b o u n d e d  
ope ra to r s  on the F o c k  space. 

Let  f be a b o u n d e d  measu rab l e  funct ion on the space of  all local ly 
finite po in t  conf igura t ions  in Na, and  denote  by  Of the co r r e spond ing  
b o u n d e d  o p e r a t o r  of mul t ip l i ca t ion  on the F o c k  space. In Sect ion 3 
(Theorem 3.2) we will p rove  tha t  there  exists exact ly  one po in t  process  Q 
on Na such that  

co(OF)=f f "dQ, 0 I E ~  
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Each position measurement can be expressed by an operator Of. The 
co(Oi) is interpreted as the expectation of the position measurement Or in 
the state co. A point process is the probability distribution of a locally finite 
random point system q~ in R d. Thus, S fdQ is the expectation of the 
random variable f(q~). For that reason Q may be interpreted as the 
distribution law of the position vector of the quantum mechanical particle 
system, and we will call Q the position distribution of co. 

Further, we will discuss general properties of such position dis- 
tributions. In particular, we will show that the position distributions are 
locally so-called X<processes. On the other hand, to each Z%point process 
(finite ZC-point process) Q we can relate a locally normal state (normal 
state) with position distribution Q (Theorem 3.3). Let us remark that the 
proof of Theorem 3.3 is based on an explicit "construction" of a state with 
position distribution Q. So the proof indicates a way to find many non- 
trivial examples of states of infinite boson systems. 

A state of a quantum system never will be characterized solely by its 
position distribution (unless the system is not a classical one). Besides the 
position distribution, we still need one special function (which we called the 
conditional reduced density matrix) to determine the state completely. The 
idea is to consider measurements that can be divided into two parts--an 
application of a local observable to a finite subsystem and a position 
measurement to the possibly infinite "rest" configuration. These 
investigations can be found in Refs. 4 and 5. In Ref. 3 we considered pure 
states of boson systems. 

In the present paper we reduce all our considerations to locally nor- 
mal states of boson systems without spin. We further assume that the local 
algebras consist of all bounded linear operators on the Fock spaces over 
the bounded regions of the phase space Nd. Though certain generalizations 
can be made in an easy way, we will not touch in this paper the problem of 
passing over to fermion systems, to systems with spin, or to other 
reasonable phase spaces. 

2. BASIC N O T I O N S  A N D  N O T A T I O N S  

2.1. Count ing Measures and Point Processes 

Let [~d, ~a] ,  d~> 1 denote the d-dimensional Euclidean space equip- 
ped with the a-algebra of Borel subsets, ~3 the ring of bounded sets in 9t d, 
6x the Dirac measure in x e Nd, and N the set of nonnegative integers. 
Further, let M be the set of all locally finite integer-valued measures on 
[~d, 9td], i.e., 

M =  {~0: (p is a measure on [Nd, 9td], q0(A)EN for all Ae~3} 
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The elements of M, which are called counting measures, can be interpreted 
as locally finite point configurations in R d. Indeed, a measure ~o on 
[JR a,9t d] belongs to M if and only if q~ can be written in the form 
go =~4~j6~j with J a finite or countable index set, xj~ ~d for all j ~ J ,  and 
(xj)~.~ having no accumulation points [each A e ~3 contains only finitely 
many points from (x~)~jJ. Thus, a counting m e a s u r e  go=~jeJ6xj 
represents a locally finite point system with position vector (x~)~s. 

For arbitrary A ~ Nd denote by A ~  the smallest o--algebra of subsets of 
M that makes the mappings ~A' : M---, N defined by 

~A,((p)=~o(AZ), (pEM (2.1) 

measurable for each A ' e  ~3 c~ A. In particular, we set R~gJ~ = 9Jl. We still 
introduce some important subsets of M. By M" we denote the set of simple 
counting measures (having no multiple points), i.e., M ' = { q ) ~ M :  
q~({x })~< 1 for all x e Rd}. The set M F is the set of finite counting measures, 
i.e., M f =  {(p e M: q0(R d) < oc }. For arbitrary A e 91 d we denote by MA the 
set of counting measures concentrated on A, i.e., MA = {(P ~ M: q~(A")= 0}, 
where A ' =  Nd\A, and by vA the restriction from M onto M A, i.e. VA: 
M ~ M A is defined by 

(VAq~)(.) ~fqOA(.)=q)( .~A),  q) E M  (2.2) 

Observe that the sets introduced above belong to 9)1 and that VA is 
measurable for each A e 9V. 

Further, we set ~J~A = !ff~ (~ MA, A ~ 9t d. In the sequel we always have 
to distinguish carefully between !)~A and AgJ~. Counting measures from a set 
Y~gJ~A have no mass points outside A, while the sets from A~Jl are deter- 
mined by the behavior of their elements inside A, i.e., ~l)t A = {vA Y: Y e ~ } ,  
A g"J~ = { V A I Y : Y E ~fJI A }. 

D e f i n i t i o n  2.1. A point process is a probability measure on 
[M, 9Y~]. A point process Q is called simple if Q(M s) = 1, and is said to be 
finite if Q(M f)  = 1. 

An important notion in point process theory is the so-called reduced 
Campbell measure. 

D e f i n i t i o n  2.2. Let Q be a point process and n a positive integer. 
The nth-order reduced Campbell measure C~ ) is the measure on 
[(Nd), x M, (9la)'| characterized by 

C~)(Ax  Y ) = f  Q(d~O) fAq)(dx'))(v(Cp-3~,,), A ~ ( ~ d )  ", Y~YJ~ (2.3) 
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Here _x" = (xl,..., xn), xjE [Ra for j ~  {1 ..... n}, X(.) denotes the indicator 
function, 6 :  is an abbreviation of Y]= 1 6x:, and q~(d_x n) is the so-called nth 
factorial measure of (p [on (9td) "] defined by 

�9 3xs (dx,) (2.4) q,(~")=~o(dxl)(~-,L,)(dx~) . . . .  ~o- j  

Observe that the measure C~ ) is a-finite. 
Finally, we introduce the notion of Z'~-point processes, which play an 

important role in our further considerations. 

D e f i n i t i o n  2.3. A point process Q is said to be a X~-point process 
if there exists a a-finite measure S on I-M, g3~] (called a supporting measure 
of Q) such that 

C ~ ) ~ I x S  

where ~ denotes absolute continuity and I is the Lebesgue measure on Nd. 
For  further and more detailed information about point process theory 

see Refs. 8 and 10. Characterizations of 22<point processes can be found in 
Ref. 14, where this class of point processes was introduced. 

2.2. The S y m m e t r i c  Fock Space over A 

The notion of the symmetric Fock space we want to introduce now is 
adapted to the language of counting measures�9 

For  each A e 9~ ~ define a a-finite measure FA on [M, 93l] by 

FA(Y)=)~y(o)+ ~. ~. P(dxn))~v(6:), Ye~J~ (2.5) 
n > ~ l  n 

where o denotes the empty realization in M, i.e., o(~ ~) =0 ,  and 1" is the 
Lebesgue measure on (~d), ( /1= l). 

We set F ~  = F. Observe that for A E ~ the measure FA is a finite one 
[Fl(M)=exp{l(A)}], and that for all A e 9 l  d, F A is concentrated on 
MS c~ Mfc~ MA. Thus, FA is concentrated on all finite point configurations 
in A without multiple points. 

The set of complex numbers we will denote by C. 

De f in i t i on  2.4. Let A E 9t 6. The set 

{ ~: M --* C, ~ measurable, supp gt ~ MA c~ M f, JC/A 
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equipped with the scalar product 

( 7 " 1  7"2)A ___.f FA(dCp) 7"~(qa) 7"2((p) 

we call the (symmetric) Fock space over A. The corresponding norm we 
denote by H" I] A. By ~ we denoted the complex conjugate of 7". 

Further, for all n e N and A e 91 d we denote by m.,  A the set of all n- 
point configurations in MA, i.e., 

M.,A = {q) E M A" @(Na)= @(A)=n}  

Analogously, we define a set ~/.,.A by 

Jg.,A = { 7" e -/C/A" supp 7"___ Mn, A } 

For A = Ea we omit in all of the above notations the index A. 

R e m a r k  2.5. Usually one defines the symmetric Fock space over A 
as the direct sum @,~N H ,  of the symmetric subspaces H,  of L2(A ~) (with 
H 0 = C) equipped with the inner product 

- f 
1 2 1 2 ('P.).~N) F. Z'(dx ~) ~;(x') ,p2(xn) ( ( ~ . ) . ~ N ,  = + ~o q~ o 

n>~ 1 n 

(cf. Ref. 2, Chapter 1, w Ref. 1, Chapter 5.2.1). 
Now we have the following orthogonal decomposition of J/gA: 

nEN 

U oo It is easy to check that the operator U =  ( , ) ,=0 given by 

1 
U.(7".)(_ x~) = ~  7".(G.), n >~ l, 7", E J//I,.A, _x" e A n 

Uo 7"0 = 7"0, ~o ~ C 

is a unitary operator from ~A onto @ ,  ~ N H, ,  i.e., the space @ ,  ~ N H ,  is 
isomorphic to J/{A- 

A definition of the symmetric Fock space similar to the construction of 
JC/A was given, for instance, by Maasen. (9) But since he is dealing with the 
symmetric Fock space spanned up by a closed interval of N1, he can use 
the order of the real line and avoid using counting measures (cf. also Refs. 
6 and 7). 
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Since we will deal in this paper only with boson systems, we call J//A 
for brevity the Fock space over A. 

Denote by @ the tensor product of Hilbert spaces, resp. of elements of 
them. The following connection between different ~'a is true. 

Propos i t ion  2.6. Let A, A ' e  9t d, A ~ A ' =  ~ .  There exists a uni- 
que isomorphism IA,A' between VgA | JgA' and J/A ~A' such that 

IA.A'(~| 7t~JgA, ~'~JgA', ~P~MA~A' 
(2.6) 

[~0A was defined in (2.2)]. 
In the sequel we will write d_x" instead of l"(d_x") and d_x ~ instead of 6o, 

i.e., for arbitrary A e 9t" and g: M ~ C we set 

fAO d-x~176 = g(o) (2.7) 

First we are going to prove a lemma. 

L e m m a  2.7. Let A , A ' ~ N a ,  A ~ A ' = ~ ,  and h: M x M ~ C  be a 
measurable, F A X F A,-integrable function. Then 

f (FAx FA,)(d[~01, (/92]) h(Cpl , (t92) = f F A ~A,(dcp) h(q~A, q~A') (2.8) 

,Drool Using the notation (2.7), we get 

f FA,~A'(d~P) h(qgA, qL~') 

~N 1 f~ &" h((G~ (6x~ = n  ~" d ~ d ' ) n  - 

n 6 N  ' k = 0  /r 

n~k k 1 1  f A dxk f( dyn-k h(~xk, ~y ,-k) = Y~ ( n -  k)!  - ~,~o-~ k e N  = " k -- 

= f ( F  A X F A , ) ( d [ q ~ l ,  6 9 2 ] )  h ( q ) l ,  (P2) (2.9) 
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R e m a r k  2.8. From the chain (2.9) we conclude that (2,8) holds 
also for all nonnegative measurable functions defined o n  m A X M A, where 
the integrals in (2.8) may be equal to + oo. 

L e m m a  2.9. Let A~9t  a and g: M ~  [0, re) be a measurable 
function. Then 

f F(d(o)g(qo)=f(FAXFA~)(d[qOl,(O2])g((ol+(o2) (2.10) 

Proof. Setting h((01, (o2) = g(q~ + (P2), we get h((pA , (pA ~) = g((p).  SO 
Lemma 2.9 is an immediate consequence of Lemma 2.7 and Remark 2.8. 

Proof of Proposition 2.6. It is known (e.g., Ref. 11, Theorem II.10) 
that there exists a unique isomorphism JA,A' between d/A| and 
L 2 ( M  A x M A ,  , F A x FA, ) s u c h  t h a t  

J~,~,(~| ~')(~0, ~0')= ~,(~0) ~u'(~0') 

~'/G~/[A, ~It E~/[A, , ( P ~ M A ,  (p' E M  A, (2.11) 

From (2.8) we get immediately that UA, A, given by 

~ ~,~, ~,(~o)= ~ , (~ ,  ~ , ) ,  ~ f f L 2 ( M  A X M A ,  , F A x F~,), ( P @ M A ~ A '  

(2.12) 

defines a unitary operator from L2(MAXM~,, FAXFA, ) onto J[A,~A" 
Putting IA,A,= UA,A'JA,A', we get the desired isomorphism with property 
(2.6). The uniqueness of such an isomorphism follows from the fact that all 
spaces J/gA, A~9 t  J, are separable Hilbert spaces and that 
(VJk(VA ") ~'n(VA' '))k,n~>0 is an orthonormal base in JC/A ~A, if (~k)k~o and 
(~u'n),~> o are orthonormal bases in ~'A and JC/A' resp. (e.g., Ref. 11, 
Chapter II.4, Proposition 2). This ends the proof. 

2.3. The Local Algebras 

Denote by ~A=~(~[A) the von Neumann algebra of all bounded 
linear operators on J//A, A e 91 d. For definition and properties of von 
Neumann algebras see, e.g., Ref. 2, Chapter 2, w and Ref. 1, Chapter 2.4. 

For A E ~3 we denote by A ~  the natural imbedding of ~4A into ~(d/ / ) .  
More precisely, for A e ~3 we put A I =  IA,AC [cf. (2.6)] and define a mapping 
A J; ";~r --* ~(~('////) by 

AJA=AI(A| AI -~, A ~ r  A (2.13) 

where 1ac iS the identity operator in sJAc. 
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D e f i n i t i o n  2.10. Ler A s ~3. The subalgebra AsJ of ~(d / / )  defined 
by ASJ= {AJA: A eS4A} is called the local algebra on A. 

It is easy to check that AJ is a .-isomorphism between d.~ and Asr 
and that ][AJA]] = ]IA]]A for all A e s J  A. We will call dA and AS~' briefly 
isomorphic (for a definition of .-isomorphisms see Ref. 1, Chapter 2.3.1). 
Working with A d  instead of dA has the advantage that all Ad ,  A e ~3, 
have a common identity denoted in the sequel by 1, and that A d  ~ A.S4 for 
A, A ' e  ~3, A ~A ' .  Further, we have that A and A' commute for A ~ A d ,  
A' ~ A,S~r A r A' = ~ ,  A, A' ~ ~.  Obviously, A S~' is also a von Neumann 
algebra. All these facts are well known in the algebraic approach to quan- 
tum mechanics (e.g., Ruelle, (12'13) Emch, (~) Chapter4, w Bratteli and 
Robinson, (~) Chapter 2.6). 

We will show that the relation between ~g)l and 9JIA corresponds to 
the relation between A ~ and dA. 

For arbitrary YegJ~ denote by Ov the operator of multiplication by 
the indicator function of Y, i.e., 

(2.14) 

Observe that for all A e 9t a and Ye ~ A ,  O r e ~r Since for all A E 9l a 
and Y e ~ ,  VAY~J~ A, w e  also have O~Aved  A for all YEg0I. 

Proposi t ion  2.11. Let A ~ ~3 and Y~ 92R. The following conditions 
are equivalent: 

(i) O r e  AS~. 

(ii) There exists a Y e A ~  such that O y = O ~ .  

(iii) O r =  AJO~A r. 

R e m a r k  2.12. From the proposition above we conclude that 

Proof of Proposition 2.17. We show the following chain of 
implications: (ii) => (iii) ~ (i) => (ii). 

(ii) =* (iii): Assume Ye Ag)l. Immediately from the definition of AgJI it 
follows that Xe  AgJI if and only if for all (p e M, (OA e VAX implies q) e X. 

We thus get for all gted//,  (peM, 

(AJOvAy~P)(q)) = AI(OvAr| 1Ac) AI lg~((p) =ZvAV(q0A) gt(rp) 

= z:&o) ~((,o)= (o  ~.~)(~o) 

(iii) ~ (i): From O~Are dA we conclude AJOvAyE Ad. From (iii) we 
thus get O r ~ A ~t. 
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(i) ~ (ii): Observe that for all Y~ 93l one has 

~(r(~o) = ~(v~ r(q~A) XvA< r(q0AC), ( p e M  

Consequently, for all Y~ ~ we have 

0 y = AI(OvA y@ OVA < ,y) A 1-1 

From the assumption Or~AS~ we thus get 

OvAy@Ova~Y=A@lA ~ 

where A is an element of ~4A. Consequently, 

A = OvA r and  OvA< r = 1A e 

Observe that 

OvA<r= 1A< implies OvA<r= OMA, 

967 

(2.15) 

(2.16) 

j / / b=  { f E  JE: f is essentially bounded with respect to F} 

It is well known that {Oi: fE~/[l b} is the maximal set of multiplication 
operators on JCd contained in ~ ( ~ ' ) .  

By the usual approximation procedure of measurable functions by step 
functions we get immediately the following result from Proposition 2.11: 

C o r o l l a r y  2.13. Let fejCZb, A ~ 3 .  The following conditions are 
equivalent: 

(i) Ose  Ad. 
(ii) There exists a A~-measurable function y such that O i = 0 7. 

(iii) Oy=  , J O  i. vA. 

(2.17) 

Observe that we have O y = Oxy for all Ye ~ .  
We set 

(Of~)(q~) =f(q~) ~u(~p), ~u~Jg, qo6M 

Taking YegJl such that VA Y=VA Y and VAC]Z=MA ,', we get YEA~IJI and 
O ~ = O r. This ends the proof. 

Now, for arbitrary f s  Jg  denote by O s the operator of multiplication 
by the function f, i.e., 
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2.4. The Quasilocal A lgebra - -Loca l ly  Normal  States 

Denote by d the uniform closure of Y A ~  A ~ ,  i.e., the closure with 
respect to the operator norm in ~ ( / g ) .  

The pair [ d ,  ( A d ) A ~ ]  is a quasilocal algebra (e.g., Ref. 2, Chap- 
ter 4, w Ref. 1, Definition 2.6.3). 

Now, let s~7 be a C*-subalgebra of 5~(J/l). A positive normalized 
linear function r /on  s~7 is called a state on s~7. 

A state r /on  a von Neumann subalgebra ~7 of s176162 is called normal 
if there exists a density matrix p o n / / t  (i.e., a positive trace-class operator 
with trace one) such that 

t/(A) = Tr(pA) (A ~s~ 7) 

where Tr denotes the trace in 5~ 

D e f i n i t i o n  2.14. A state co on d is said to be locally normal if for 
all A e ~3 the restriction A CO of CO to A d~t is a normal state, i.e., for all A e ~3 
there exists a density matrix AP on .//{ such that 

co(A)=Aco(A)=Tr(apA), A e A d  

(e.g., Ref. 1, Definitions 2.6.6, 2.4.20, and Theorem 2.4.21). 
Observe that a locally normal state co on d is normal [-more precisely, 

co has a normal extension to ~ ( J 4 ) ]  if and only if there exists a density 
matrix p on dr such that p = AP for all A ~ ~B. 

Remark 2.15. Without any difficulty we could consider more 
general quasilocal algebras [-~7, (AS~7)A~] with the property that for each 
A e ~3, A~7 is isomorphic to an irreducible C*-subalgebra of ~r Since we 
are interested only in states locally determined by density matrices, we 
could extend such a state canonically to a locally normal state on 
[ ,d ,  ( A d ) A ~ ] .  For a more general definition of quasilocal algebras see 
the books cited above. 

3. THE POSIT ION D I S T R I B U T I O N  OF A LOCALLY 
N O R M A L  STATE ON 

In this section we want to relate to each locally normal state co on s~ a 
point process Qo~ with the property that for all A e~B and YeAgX, 
Qo,(Y) = co(O y). 

We will see that Qo~ is uniquely determined by the operators O:I, 
Ye  AgX, A e ~ .  
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The operators O y correspond to local position measurements and Qo~ 
may be interpreted as the position distribution of co. Observe that the set 
{Oy: Y c _ M ~ M  f}  (i.e., operators Oy, where Y consists only of infinite 
configurations) gives no contribution to the characterization of position 
measurements of the infinite system. Indeed, since gts ~ is concentrated 
on M s, we have O y - 0  for Y c _ M ~ M  s. So the reasons for the need to 
describe the infinite point process Qo~ by the local position measurements 
are the same as for leaving the Fock space by passing over to infinite 
systems (Ref. 2, Chapter 1, w 

Let co be an arbitrary, but in the sequel fixe'd, locally normal state on 
~r As above, we denote for each A e ~3 by ,co the restriction of co to A ~ 

and by AP the density matrix on ~//{ related to ACO- Since A ~  and ~r are 
isomorphic, there exists a normal state COA on SeA and a density matrix PA 
on ~A such that 

CO A( A ) = TrA(p, A( = Tr[ AP( AJA ) ] = ACO( AJA ) = co( , J A  A c ~r A 

(3.1) 

[A J w a s  defined by (2.13)1. Here T r  A denotes the trace in sr For  all 
A e ~3 we define a point process QA by 

QA(Y) gfcoA(Or~M~)), YegJ~ (3.2) 

From (3.2) one easily gets for all f e  J//A C~ jgb 

EQAf= ~A(~Df) = ACO(AJCf) = CO(AJ~ r) (3.3) 

where 

EoAf  = f QA (dq~) f(~o) 

is the expectation of f with respect to the point process QA. 
The QA is a point process of a special type. We have the following 

result. 

Proposition 3.1. Let A e ~3. The point process QA defined by (3.2) 
is a finite S%point process concentrated o n  M A. 

Proof. There exists an orthonormal system (~j)j~s of elements 
from Jr and a sequence (~j)j~j, ~j~>O, ~_.jEjO~i=I, such that PA= 
Zj ~ j  c~j(gtj, .)~j.  Having this representation of PA, we get, for all YeJCA, 
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QA(Y) = TrA(PA 0 r) 

= Z ~J(%, o ~ j )  
j E J  

,4 j ~  J 

j ~ J  

= + Y ,  ~., ~ d_x ~ xY(6x~) Y~ ~j1%(6~)1= 
= j ~ J  

Wakolbinger and Eder (Ref. 14, Theorem 2.13) proved that for a finite 
point process Q to be s it is necessary and sufficient that there exist real 
functions 2~ on N", n~> 1, 2oe N1, such that 

Q(Y)=xr(O)2o+ ~ 1--[ dff"Xr(6x,)2,(_x,) 
n[J n = l  

Consequently, putting 

~.(-x") = xA~ x~ Z ~J I ~J(6~o)l 2, n~>l 
j e J  

~o = Z ~J I%(o)l 2 
j E J  

we get that QA is a L~C-point process. 
Now, we define for each A e ~ a probability measure aQ on [M, a ~ ]  

by 

AQ(Y) = QA(v~ Y), Ye A?JJ~ (3.4) 

Since A ~  = {VA1Y: YE 9J~A}, the probability m e a s u r e  AQ is well-defined. 
From (3.1) and (3.2) we get 

AQ(Y)=coA(Ov`4y)= Aco(AJOvAr)= Aco(Or)=co(Oy) Y6 A~J~ (3.5) 

Now, for all A, A' e ~ such that A ___ A' we have A~J~ _ A,gJ~, and because of 
the quasilocal structure, A ~  ~ A,~r SO, for each Ye A~J~ we have O y e  Ad ,  
O r e  A,d. From ACO(Oy)= A'CO(Or) [=co(Or) ]  we conclude that 

AQ(Y)=A,Q(Y ), A,A'e?D, A~_A', YeA?Or (3.6) 

This allows us to prove the following result: 
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Theorem 3.2. There exists exactly one point process Q~ such that 

Q~(Y)=co(Or ) ,  A ~ ,  Y ~  A?O~ (3.7) 

Proof. Let n be a natural number, A j~B ,  k j e N ,  for j ~ { 1  ..... n}, 
A ~ c~ Aj = ~ for i :/= j. There exists a set A E ~3 such that A _ A ~ w .. .  w A,,. 
We set 

pA'""'A"([k~,..., k , , ] )=  AQ({cpeM: p(A])=k~, . . . ,  ( p (A , )=k ,} )  (3.8) 

It is easy to check that pA~,...,A, defines a probability distribution on 
N". Since 

{q) ~ M: ~o(A]) = k,,..., ~0(A,) = k,} ~ A~IJI 

from (3.6) we conclude that pAI,...,A, does not depend on the special choice 
of the set A ~ _ A l W  . . .An .  It is easy to check that the probability dis- 
tributions pA,,...,A, on N" satisfy the following compatibility conditions: 

(i) For  all permutations (il ..... i,) of (1 ..... n) and for all k] ..... k , ,~N 
the following holds: 

p ~ ' " ' " ( [ k ~  ..... k,])=p~'~,.~'o(Vk~,,...,kin]) 

(ii) For all k 1,..., k~_ l e N we have 

pX~'"A~ n l , k J ) = p  A''--,A~ ' ( [k , , . . . , k~_l ] )  
k e n  

(iii) For all m e { 1 ..... n } and for all kl ..... k m ~ N the following holds: 

p~'"'x~({[ll , . . . ,  ln]: 11=kl,..., l,,_~ =km_~,  lm+ ' + l n = k m }  

= pA,,....xm_~.A . . . . . .  ~,([kl,... ' km]) 

(v) For  all sequences (An. lw . . .  w A  . . . .  )n~l of finite unions of 
pairwise disjoint sets from ~ decreasing monotonically toward ~ we have 

lim pA"'~'"A~,~,([O,..., 0])  = 1 
n ~ o o  

In Ref. 10, Theorem 1.3.5, it is shown (in analogy to the classical 
Kolmogorov theorem on finite-dimensional distributions) that the con- 
ditions (i)-(iv) are sufficient (and necessary)for the existence of exactly one 
point process Q~o with the property 

Q~({ (p ~ M: p(A1) = k,,..., p (A, )  -- k~}) 

= pAX'"A"([kl ,..., k , ] )  

for all n ~  1, k I ..... k ~ e N ,  A1,..., A ~ e ~ ,  A j c ~ A k = ~ J  for j vak .  
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We thus finally get that there exists a unique point process Qo, such 
that Q~(Y)= AQ(Y) for all Y of the form 

{~0 e M: q)(A a) = kl ,..., ~0(A,) = kn} 

where A _~ A1 ~ -.- ~ An, A, Aje ~3. Since for each A e ~,  AgJ/ is generated 
by sets of this type, we get (3.7). 

Each position measurement can be expressed by a multiplication 
operator ~g,  where g is a (real-valued) measurable function on M. 
Now, a position measurement in U A ~  AS# corresponds to a position 
measurement in some AS# and thus to a multiplication operator ~g ~ AS#. 
Because of Corollary 2.13, g is a (real-valued) AgJl-measurable function 
from jC/b. From (3.7), (3.4), and (3.3) one easily concludes that for all 
Ae~3 and ~g~AS# 

co(~?e) = EAQ g = EQ~ g 

Thus, for each position measurement ~g the expectation cO(~g) is equal to 
the expectation of g with respect to the point process Q,,. On the other 
hand, Q,o is uniquely determined by all of the integrals EQ~g, 
~g  ~ Q)A E ~3 AS# (g real-valued). This allows an interpretation of Qo~ as the 
distribution of outcomes of position measurements of a quantum system 
being in the state co. That is why we will call Qo~ the position distribution 
of co. 

From (3.7), (3.5), and (3.4) we conclude that for all A e~3 and Ye AgJ/ 

Q~(Y) = AQ(Y)= QA(VA Y) 

Thus, from Proposition 3.1 we have that the position distribution Qo~ 
is locally a finite S '-point  process concentrated on [MA, 9)IA]. From 
Theorems 2.11 and 2.13 in Ref. 14 we know that each Z'C-point process is 
locally a finite SC-point process. 

On the other hand, we have the following result: 

T h e o r e m  3.3. Let Q be a (possibly infinite) L'C-point process. 
There exists (at least one) locally normal state co on d with position 
distribution Q~o = Q, i.e., such that 

co(oy)=Q(Y), Ye AgJI, A e ~  

Before we prove this theorem, we will introduce an important notion from 
point process theory. 
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Def ini t ion  3.4. Let Q be a point process. We defne a measure 
Cb ~) on [ M x  M, ~ |  characterized by 

C(e~ x Y2)=fQ(drp) ~ Xy~(qS)Xy~(cp-~b), Yt, Y 2 ~  (3.9) 
@sMf 

Here ~b _~ ~p means that ~p- ~b ~ M, i.e., ~b is a subconfiguration of ~p. The 
measure Cb ~ is called the compound Campbell measure of Q (cf. Ref. 8, 
Chapter 12.3). We collect some properties of Cb~176 

k o m m a  3.5. Let Q be a point process. Then: 

(i) C~ ~ is a-finite. 

(ii) Cb ~) is concentrated on MY• M. 

(iii) C~~ ,) for all A~B, A' ~9~ a, Ac~A'=~.  
(iv) C~~ x(.))=Q. 
(v) If Q is a S~-point process, then there exists a ZC-point process P 

such that C~ ~) < F >< P. 

ProoL For a proof of (i) (iv) see Ref. 8, Chapter 12.3. We will show 
(v). Let Q be a S%process. Then for all n >~ 1 there exists a S~-process P,, 
such that C~ 1 < l ' x  P ,  (where l" denotes the Lebesgue measure on ~,a) 
(ReE 14, Theorems 2.9 and 2.10). Let P be a XC-process dominating all P,,, 
neN (Po=Q) (for instance take P=Z,~N~,P, ,  where ~ > 0  for all 
n e N, YL,~N ~, = 1). We thus get for all n ~> l, C~ ") < l" x P. Setting C~ ) = Q 
and using the notation (2.7), we obtain for all YI, Y2 e 9L~ 

cb~(Y, • Y2) = E cb~[(Y1 ~ M . )  x Y2] 
r tEN 

= Y ~ 1  f c~(d[_x-, ~o]) z~,(6x,,)_ zy~(~o) 
hEN 

1 dC~) x" P(&o) ~ #.,fax" (_ ,~o)Z~,(6x,) =f~2 .~N - d(l"xP) - 

= fy2P(d~) fy, F(J#)K~(@, cp) (3.103 

where we have set 

dC~) (x",~o), n>~l, xneN "J, cpeM (3.11) ,~(6~o, ~o) - a(t" x e )  

822/47/5-6-24 
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and 

This ends the proof. 

L e m m a  3,6.  

Fichtner and Freudenberg 

dQ 
K~(o, @) = ~/-ff (@), @eM (3.12) 

Let Y be a Z~-point process, and let P and R be 
XC-point processes such that 

C(Q~ C(p~)~FxR (3.13) 

Then, denoting by x~ and ~g (versions of) the Radon-Nikodym derivatives 
dC(f)/d(FxP) and dC~e~)/d(FxR), resp., we have for all A , A ' e ~ ,  
A c ~ A ' = ~  

/s -]- @2, @3) KPR( D, @3) = KTD(@I, @2 -'F @3) /~f(@2, @3) (3.14) 

Fx Fx  R-a.a. (@1, De, @3) from MAX MA, x M(A ~A')" [The existence of P 
and R with (3.13) follows from Lemma 3.5, (v).] 

Proof. We fix A, A ' ~ 3 ,  A ~ A ' = ~ ,  and set A " = ( A w A ' )  C. For 
each measurable function f :  M A x MA, x M A. --+ [0, oo) we get, using 
Lemma 2.7 and Lemma 3.5, part (iii), 

fM (Fx Fx e)(d[@l, @3]) ~02, 
AXMA'XMA . 

x ~c~(@1 + @2, @3) Kg(o, @3)f(@1, @2, @3) 

= fMAuA' f(d@l)fMA" R(d@2)/~(D, @2)KD(@,, @2)f(@lA' @IA" (/)2) 

= fMAwA, F(d@I)fMA,,P(d@2)K'Q(@I' @2)f (@lA '  @IA" @2) 

= f  C(~)(d[@l, @2]) )~MA.A'(@I) ZMA"(@2)f(@IA' @la" @2) 

= f Q(d@) f(@A, @a', @A") 

= f  Q(@) Z XMA(@I)XMA r (@-@I)A,, (@-@,h,,) 
4Ol ~ ,;o 

= f  P(d@)"mfA g(d@l) ICD(@I' @) XM,,Ic(@) f(@l, @A', @A") 
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=;M F(drPl) f P(d(P) 2 XMA'((P2)XMA"(CP--(P2) 
A qo2~( p 

= fMA F(d(pl)fMA' F(d~~ R(dcp3)~c~((P2' @3) 

• +  o3)f( ol,  o3) 

This proves (3.14). 

Proof of Theorem 3.3. Let Q be a Z'C-point process, and let P and R 
be X~-processes with (3.13). Again we denote by ~c~ and ~:g (versions of) 
the Radon-Nikodym derivative dCb~)/d(FxP), resp. dC(fl~ 
Without loss of generality we may assume ~c~(q~l,Cp2)~>0 for all 
q21, (D2 e M. We put 

~/(~1, ~2) = [-K~((Pl, ~02)] 1/2, q?l, ~~ (3.15) 

and for all A e ~3 

g,A(.)= g,(., (p) XM~(.)](~t,,~(~0) ' ~0~M (3.16) 

First we will prove that for all A �9 ~3 and P-a.a. (p (and thus for Q-a.a. 
<o) we have 5u~ � 9  Indeed, from Lemma 3.5, part (iii), we get 

fM P(dqo) fM F(d(b)l ~A((b)[2 

= C(~)(MA • MA~ ) = Q(M) = 1 (3.17) 

Consequently, for all A �9 ~ and P-a.a. (p, II T~ ]1 < oo. Thus, for all A �9 ~ ,  by 

IM TA Am(A) = P(d~~ ~o), Ae  A d (3.18) 
A c 

there is defined a positive linear functional on AZg. From (3.17) we further 
conclude 

At9(1) = I. ,  P(dq))( ~PJ, ~P~) = C(O~)(M A x M A~)= 1 
A c 

Consequently, for each A �9 ~3 there is defined a state on A ~%]. 
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We will prove that all states Am are normal ones. We fix A s ~3. There 
exists a sequence of (finite rank) projectors (A,),>~I in ~'A such that 
(0~<)A,~<A,+I for all n>~ 1 and A, converges a-weakly to 1 A. 

This implies 

~p~o)- ( ~ ,  ~A), P-a.a. ~p l i ra  (~UA, A . ~  A _ A (3.19) 

By Lebesgue's dominated convergence theorem, we get from (3.19) 

lim Aco(AJA,)=fM P(d(~ ~pA)= 1 
t t~co  A c 

Because of the isomorphism between sr and Ad ,  we obtain, using 
Theorem 2.6.14 in Ref. 1, that Am is a normal state on Ad.  

We still have to prove compatibility of all states Aco, i.e., we have to 

show 

A~(A)=A,CO(A), A,A'm~3, Ac_A', AEA~ (3.20) 

We fix A, A' ~f~, Ac_A', and AG A,N r. 
Using Lemma 2.7, Lemma 3.5, part (iii), Lemma 3.6, and the fact that 

OM~.AOMA, is isomorphic to OMAAOMA | 1A,\A, w e  get the following chain 
of equalities: 

X [ /s  "t- (i02, q )3 ) l  1 /20MA,AOMA,E~c~(qO,  + ~o2, q03)] '/2 

= fMA, R(dq)3) fMA.\AF(d(P=) fMA F(&~ 

x [ ~ ( o ,  ~o3) ~c~(q~, + ~02, q~3)],/2 

R x OMA, AOMA[~p(O, q~)]'/2[~c~(~o, + ~o2, ~p~)]'/~ 

= L~,cR(dq~ fMa.\ F(d~~ fMA F(dq~I) ~c~((p2' (p3) 

Ov~AOM~,[v~e(~02, ~03)] 1/2 x [~c~(q~l, ~03 + q~2)] 1/2 R 

x [~(~Pl ,  ~03 + ~P2(] 1/2 
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= fMA,cR(d(p3)fMA,\AF(d@2)KR((p2, ~3) fMAF(d~I )  

Kp !./2 p • [ Q(~o~, r O~,AO.,~,[~cQ(~o~, ~ + ~ 0 ~ ) ]  ~/2 

= fMA. R(d(-P3)facA,\AF(dq)2)lc~((,02, ( / )3) f .F(d~, , )  

• ~ttA,+r ~/A3 + ~p2)((~01 ) 

= fiAcP(d~03)fMA F(d(~Ol) (tlA3(~O1)(OMAAOM A ~/A3)((~01) 

=f_. P(dcP)(VA' OMAAOM~ A T~) = Aco(A) (3.21) 
~M dc 

This proves (3.20). We thus have that there exists a locally normal state (~ 
on ~ '  such that 

(9(A)=ACO(A), A e ~ ,  A6Agr ' 

Finally, using the identity 

OM~ 0 ~.OM~ = 0 ~  y, 

we get for all A E $ and Ye AgJ/ 

~o(o y)= ~o(O ~) 

A e ~ ,  Y~ A ~ 

= fM e(d~o)(~, 0o~'~) 
A c 

=f Q(d~) ~ XVAy(~O)XMAC((~--~) 
(b~q, 
O~Mf 

= f Q(d,)  zo~ y(~oA) XM~c(~O~,') 

= f Q(d(p) X~a Y((PA) 

= f Q(d(p) XY((P) = Q(Y) 

This shows that Q = Q~ and ends the proof of Theorem 3.3. 



978 Fichtner and Freudenberg 

Summarizing the results, we can state that to each locally normal state 
co on d there corresponds a uniquely determined point process Q o~--the 
position distribution of co (Theorem 3.2). This point process is locally a X e- 
process. It is still an open problem whether there exist (physically 
meaningful) locally normal states for which the position distributions are 
not -re-processes. 

If the locally normal state co is a normal one [more precisely, if it has 
a normal extension to ~e(Jg)] ,  then its position distribution Q~o is a finite 
Xe-process. On the other hand, to each finite -re-process Q we can relate a 
normal state co such that Qo = Q. 

Many examples are given in Ref. 5. For instance, one can define 
infinite Glauber states and prove that the position distributions of such 
states are Poisson point processes (cf. Ref. 5, Chapter 7). 
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