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It is shown that to each locally normal state of a boson system one can
associate a point process that can be interpreted as the position distribution of
the state. The point process contains all information one can get by position
measurements and is determined by the latter. On the other hand, to each
so-called Z<-point process O we relate a locally normal state with position
distribution Q.
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1. INTRODUCTION

The state of a finite system of bosons in R? is described by a normalized
positive trace-class operator on the symmetric Fock space over R% In
order to characterize infinite systems one may use positive normalized
linear functionals @ on a suitably chosen C*-algebra o of bounded
operators on the Fock space.

Let f be a bounded measurable function on the space of all locally
finite point configurations in R? and denote by O, the corresponding
bounded operator of multiplication on the Fock space. In Section 3
(Theorem 3.2) we will prove that there exists exactly one point process @
on R such that

w(0)=[r-dQ, Oest
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Each position measurement can be expressed by an operator O,. The
(0Oy) is interpreted as the expectation of the position measurement O in
the state w. A point process is the probability distribution of a locally finite
random point system @ in R% Thus, [ fdQ is the expectation of the
random variable f(®). For that reason Q may be interpreted as the
distribution law of the position vector of the quantum mechanical particle
system, and we will call Q the position distribution of w.

Further, we will discuss general properties of such position dis-
tributions. In particular, we will show that the position distributions are
locally so-called 2“-processes. On the other hand, to each XZ*-point process
(finite Z°-point process) Q we can relate a locally normal state (normal
state) with position distribution @ (Theorem 3.3). Let us remark that the
proof of Theorem 3.3 is based on an explicit “construction” of a state with
position distribution Q. So the proof indicates a way to find many non-
trivial examples of states of infinite boson systems.

A state of a quantum system never will be characterized solely by its
position distribution (unless the system is not a classical one). Besides the
position distribution, we still need one special function (which we called the
conditional reduced density matrix) to determine the state completely. The
idea is to consider measurements that can be divided into two parts—an
application of a local observable to a finite subsystem and a position
measurement to the possibly infinite “rest” configuration. These
investigations can be found in Refs. 4 and 5. In Ref. 3 we considered pure
states of boson systems.

In the present paper we reduce all our considerations to locally nor-
mal states of boson systems without spin. We further assume that the local
algebras consist of all bounded linear operators on the Fock spaces over
the bounded regions of the phase space R“ Though certain generalizations
can be made in an easy way, we will not touch in this paper the problem of
passing over to fermion systems, to systems with spin, or to other
reasonable phase spaces.

2. BASIC NOTIONS AND NOTATIONS

2.1. Counting Measures and Point Processes

Let [RY, R?], d>1 denote the d-dimensional Euclidean space equip-
ped with the o-algebra of Borel subsets, B the ring of bounded sets in R,
J, the Dirac measure in x€R? and N the set of nonnegative integers.
Further, let M be the set of all locally finite integer-valued measures on
[RY, R, ie.,

M= {¢: ¢ is a measure on [R% R’], ¢p(A)eN for all 1B}
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The elements of M, which are called counting measures, can be interpreted
as locally finite point configurations in R“ Indeed, a measure ¢ on
[RY R9] belongs to M if and only if ¢ can be written in the form
¢=3%,.,0, with J a finite or countable index set, x; € R for all jeJ, and
(x,);c, having no accumulation points [each 4e®B contains only finitely
many points from (x;),.,]. Thus, a counting measure ¢=3,.,0,
represents a locally finite point system with position vector (x;);c .

For arbitrary 4 € R? denote by , I the smallest o-algebra of subsets of
M that makes the mappings £, M — N defined by

Eile)=op(d), o@eM (2.1)

measurable for each 4"e B n A. In particular, we set gt =M. We still
introduce some important subsets of M. By M* we denote the set of simple
counting measures (having no multiple points), ie, M= {peM:
@({x})<1for all xeR?}. The set M7 is the set of finite counting measures,
ie, M/={peM: ¢p(RY)<}. For arbitrary A4 e R’ we denote by M , the
set of counting measures concentrated on 4, ie., M, = {peM: p(A1°)=0},
where 4°=R%A, and by v, the restriction from M onto M, ie. v,:
M — M , is defined by

wa@)) Z 04 )=0(-n4),  eeM (2.2)
Observe that the sets introduced above belong to W and that v, is
measurable for each 4 e R,

Further, we set M, =M M ,, 4 R% In the sequel we always have
to distinguish carefully between 9, and , M. Counting measures from a set
Y e , have no mass points outside A, while the sets from 9N are deter-
mined by the behavior of their elements inside 4, ie., M, = {v,¥: Ye Wi},
M= {v,'Y: Yed,}

Definition 2.1. A point process is a probability measure on
[M, M]. A point process Q is called simple if Q(M*)=1, and is said to be
finite if Q(M”7) = 1.

An important notion in point process theory is the so-called reduced
Campbell measure.

Definition 2.2. Let O be a point process and » a positive integer.

The nth-order reduced Campbell measure C¢’ is the measure on
[(RY)" x M, (RY)"® M] characterized by

CPaxY)=[ Qo) | pldxVxro—3,)  Ac(RY, YeMm (23)
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Here x"=(x,,..,x,), x;eR? for je{l,.,n}, x., denotes the indicator
function, d,. is an abbreviation of 37_, d,;, and ¢(dx") is the so-called nth
factorial measure of ¢ [on (R9)"] defined by

n—1

o(dr") = o(dx; )@ — 5., )(dx) - --- -(qo— 5 5x,~> (d)  (24)

i=1

Observe that the measure Cy’ is o-finite.
Finally, we introduce the notion of Z*“-point processes, which play an
important role in our further considerations.

Definition 2.3. A point process Q is said to be a 2°-point process
if there exists a o-finite measure S on [ M, ] (called a supporting measure
of ) such that

Cy)<IxS

where < denotes absolute continuity and / is the Lebesgue measure on R?

For further and more detailed information about point process theory
see Refs. 8 and 10. Characterizations of Z“-point processes can be found in
Ref. 14, where this class of point processes was introduced.

2.2. The Symmetric Fock Space over A

The notion of the symmetric Fock space we want to introduce now is
adapted to the language of counting measures.
For each 4 e R’ define a o-finite measure F, on [M, 9] by

EAD=100)+ 3 [ r@ge), Yem @)
nzl"""
where o denotes the empty realization in M, ie., o(R9)=0, and /" is the
Lebesgue measure on (R)" (/' =1).

We set Fra=F. Observe that for 4 € B the measure F, is a finite one
[FM)=exp{l(4)}], and that for all AeR? F, is concentrated on
MM M ,. Thus, F, is concentrated on all finite point configurations
in A without multiple points.

The set of complex numbers we will denote by C.

Definition 2.4. Let AeR? The set

M= {5”: M — C, ¥ measurable, supp ¥ < M , " M/,

[ Fatdo)1w(0)? < oo}
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equipped with the scalar product

(¥, ¥2) = | F,(do) ¥'(9) ¥*(0)

we call the (symmetric) Fock space over A. The corresponding norm we
denote by | -|| .. By ¥ we denoted the complex conjugate of ¥.
Further, for all ne N and A e R? we denote by M, , the set of all »-

point configurations in M ,, ie.,
M, ={peM,: p(RY) = @(A4)=n}

Analogously, we define a set .4, , by
My = {Vel, supp¥PM,,}
For A= R? we omit in all of the above notations the index A.

Remark 2.5. Usually one defines the symmetric Fock space over A
as the direct sum @, _n H, of the symmetric subspaces H,, of L,(A") (with
H,=C) equipped with the inner product

(@Dens (P2en) = P43+ ¥ | 1'(dx™) DY(") DIx")
nz1t4"

(cf. Ref. 2, Chapter 1, §1.3; Ref. 1, Chapter 5.2.1).
Now we have the following orthogonal decomposition of .#,:

%A: @ e%n,A

neN

It is easy to check that the operator U= (U,) _, given by

1
Un(syn)(_xn):—' SUn(ax")’ nz 1’ Y/neﬂn,/“ _xneAn
n. -

UOqIOZWo, WOGC

is a unitary operator from .#, onto @, _x H,, i€., the space @, . H, I
isomorphic to .#,.

A definition of the symmetric Fock space similar to the construction of
M, was given, for instance, by Maasen.®) But since he is dealing with the
symmetric Fock space spanned up by a closed interval of R, he can use
the order of the real line and avoid using counting measures (cf. also Refs.
6 and 7).
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Since we will deal in this paper only with boson systems, we call .#,
for brevity the Fock space over A.

Denote by & the tensor product of Hilbert spaces, resp. of elements of
them. The following connection between different .4, is true.

Proposition 2.6. Let A4, A'e R AnA"= . There exists a uni-
que isomorphism 7, , between .4, ® .4, and .4, , such that

I, (P® Y )No)=¥(p,) Y(oa) Yed, Vely @oeM,, 4
(2.6)

[@, was defined in (2.2)].
In the sequel we will write dx” instead of /"(dx") and dx° instead of §,
ie., for arbitrary AeR? and g: M - C we set

| dx"(0.)= g(0) 27)

First we are going to prove a lemma.

Lemma 2.7. Let 4, A’ cRY AnA'=¢F, and h: MxM —-C be a
measurable, F, x F ,-integrable function. Then

f (FaxFo)dlog, 021) hley, 02) = j Fioaldo) h(o,, 0 0)  (2.8)

Proof. Using the notation (2.7), we get

[ Facaldo) b, 0.4)

1

= Z H—!I(AUA ¥ dzcn h((éf”)/i’ (55")‘4)

neN

=¥ Z R R O TCNA P
Ak (A/)n—k_ - :V

neN

— k n k
-y 3 k‘(n_k)'Lkdgc L” A TR

keN n=k

=), k'Lk 2 —f(/‘)nd_}’"h(ézck,éf)

nkeN

= [ (FaxFo)dlo1, 921) ho1, 02) (29)



Point Processes and Infinite Boson Systems 965

Remark 2.8. From the chain (2.9) we conclude that (2.8) holds
also for all nonnegative measurable functions defined on M, x M , where
the integrals in (2.8) may be equal to + co.

Lemma 2.9. Let AR and g2 M —[0,0) be a measurable
function. Then

| Fdo) g(0)= [ (Fux Fudlor, @:1) glos +02)  (210)

Proof. Setting h{¢,, ;)= g(@1+ @2), we get h(g 4, ¢ )= g(@). So
Lemma 2.9 is an immediate consequence of Lemma 2.7 and Remark 2.8.

Proof of Proposition 2.6. 1t is known (c.g., Ref. 11, Theorem II.10)

that there exists a unique isomorphism J, , between #,& .#, and
LM, xM,, F,xF,)such that

S (PO ), )=o) ¥(0")
Yed,, Vel, oM, ¢o'cM, (2.11)

From (2.8) we get immediately that U, ,. given by

UA,A"P((P)Z V(04 ®a)s YelL,(M,xMy,F,xFy), oeM,
(2.12)

defines a unitary operator from L,(M,xM,, F,xF,) onto M, 4.
Putting 1, ,=U, J,,, we get the desired isomorphism with property
(2.6). The uniqueness of such an isomorphism follows from the fact that all
spaces .#,, AeWRY are separable Hilbert spaces and that
(Vilvs) Yo(vy ))inso is an orthonormal base in 4, o if (¥;)iso and
{¥.}.>o are orthonormal bases in .#, and .#, resp. (e.g, Ref 11,
Chapter 11.4, Proposition 2). This ends the proof.

2.3. The Local Algebras

Denote by &, =.%(.#4,) the von Neumann algebra of ail bounded
linear operators on .#,, A€ R For definition and properties of von
Neumann algebras see, e.g., Ref. 2, Chapter 2, §1.5, and Ref. 1, Chapter 2.4.

For Ae€B we denote by .o/ the natural imbedding of &7, into £ (.4 ).
More precisely, for 4B we put , /=1, 4 [cf. (2.6)] and define a mapping
qJ Ay L(M) by

JA= (AR ;) 7, Ae o, (2.13)

where 1 ;. is the identity operator in &7,..
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Definition 2.10. Ler 4 €B. The subalgebra ,.of of £ (4) defined
by ,of ={,JA: A€ sd,} is called the local algebra on 4.

It is easy to check that ,J is a s-isomorphism between &/, and ,.o/
and that | JA| =|l4|, for all Ae</,. We will call &/, and ,«/ briefly
isomorphic (for a definition of #-isomorphisms see Ref. 1, Chapter 2.3.1).
Working with ,./ instead of /, has the advantage that all ,o/, A€ B,
have a common identity denoted in the sequel by 1, and that ,&/ = ,.. for
A, A€ B, A< A'. Further, we have that 4 and A’ commute for 4€ ,.o,
A'e p o8, AnAd' =, A, A'€B. Obviously, ,& is also a von Neumann
algebra. All these facts are well known in the algebraic approach to quan-
tum mechanics (e.g., Ruelle,"*!® Emch,® Chapter 4, §1, Bratteli and
Robinson, ™) Chapter 2.6).

We will show that the relation between 9t and IR, corresponds to
the relation between ,.&/ and 7,.

For arbitrary Ye 3 denote by O, the operator of multiplication by
the indicator function of Y, ie.,

(OyPNo)=1xy(@) Pl9) Vel,peM (2.14)

Observe that for all A€ R?and YeM ,, O, e o4,. Since for all 4 R?
and YeIM, v, YeM’, we also have O,,y€ o, for all YeIk.

Proposition 2.11. Let 4B and Ye M. The following conditions
are equivalent:

(i) Oye€ 4.

(ii) There exists a Ye M such that 0, =O0jy.

(i) Oy= 4JO,,y.

Remark 2.12. From the proposition above we conclude that
{JOy: YeM,}={0,: Ye M}

Proof of Proposition 2.17. We show the following chain of
implications: (ii) = (iii) = (i) = (ii).

(ii) = (iii): Assume Ye ,9M. Immediately from the definition of ,IN it

follows that X'e ,9 if and only if for all p e M, ¢ ,ev,X implies p € X.
We thus get for all Ye . #, pe M,

(470,,y¥P)No)= 41(0,,y®1,) AP () =Y, (0 4) P(0)
=yy(¢) (@)= (0 ¥)o)

(iii)= (i): From O,,y€ o, we conclude ,JO,,y€ .. From (iii) we
thus get O, € .
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(i)=>(ii): Observe that for all Ye9R one has

IAP) = X0y (@0) Xoser(@ac) @M (2.15)
Consequently, for all Y eI we have
Oy=41(0,,y®O0,,.y) 7" (2.16)
From the assumption O, € ,.of we thus get
Ou,,y® OUACY:A ® lAC
where A is an element of «/,. Consequently,
A=0,y and O, cv=14
Observe that

O,.y=1, implies O,.,=0,,

Taking ¥ e such that v, ¥Y=v,Y and v, Y=M ., we get Ye M and
Oy= 0. This ends the proof.

Now, for arbitrary fe.# denote by O, the operator of multiplication
by the function f£, i.e.,

(O )e)=f(o) Plo), Ved,peM (2.17)

Observe that we have O, = ny for all Y eIk
We set

MP={feM: fis essentially bounded with respect to F}

It is well known that {O,: fe.#”} is the maximal set of multiplication
operators on .# contained in £ (.4 ).

By the usual approximation procedure of measurable functions by step
functions we get immediately the following result from Proposition 2.11:

Corollary 2.13. Let fe.#® AeB. The following conditions are
equivalent:

(i) Ose 4.
(ii) There exists a ,M-measurable function f such that O, = Oy
(i) O= ,JO,,,.
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2.4. The Quasilocal Algebra—Locally Normal States

Denote by &/ the uniform closure of |J ;. g 4, i.€., the closure with
respect to the operator norm in Z(4).

The pair [, (,%),.5] is a quasilocal algebra (e.g., Ref. 2, Chap-
ter 4, §1.1; Ref. 1, Definition 2.6.3).

Now, let &/ be a C*-subalgebra of #(.#). A positive normalized
linear function 5 on 7 is called a state on <.

A state # on a von Neumann subalgebra o7 of ¥ (.#) is called normal
if there exists a density matrix p on .# (i.., a positive trace-class operator
with trace one) such that

n(A)=Tr(pd) (Aed)

where Tr denotes the trace in L{.A4).

Definition 2.14. A state w on ./ is said to be locally normal if for
all A4 € B the restriction ,® of w to , o is a normal state, i.c., for all 1B
there exists a density matrix ,p on .# such that

o(d)= ,0(4)=Tr(,p4), A€ o

(e.g., Ref. 1, Definitions 2.6.6, 2.4.20, and Theorem 2.4.21).

Observe that a locally normal state w on .27 is normal [ more precisely,
 has a normal extension to £ (.#)] if and only if there exists a density
matrix p on .# such that p= ,p for all 1eB.

Remark 2.15. Without any difficulty we could consider more
general quasilocal algebras [, (,7),.s] With the property that for each
A€W, ,o7 is isomorphic to an irreducible C*-subalgebra of o7,. Since we
are interested only in states locally determined by density matrices, we
could extend such a state canonically to a locally normal state on
[, (49),.5] For a more general definition of quasilocal algebras see
the books cited above.

3. THE POSITION DISTRIBUTION OF A LOCALLY
NORMAL STATE ON ./

In this section we want to relate to each locally normal state w on &/ a
point process @, with the property that for all 4/e®B and Ye I,
Qu(Y)=w(0y).

We will see that @, is uniquely determined by the operators Oy,
Ye M, AeB.



Point Processes and Infinite Boson Systems 9269

The operators O, correspond to local position measurements and Q,,
may be interpreted as the position distribution of w. Observe that the set
{Oy: YS M\M’)} (ie., operators Oy, where Y consists only of infinite
configurations) gives no contribution to the characterization of position
measurements of the infinite system. Indeed, since ¥e .# is concentrated
on M/, we have 0, =0 for Y< M\M”. So the reasons for the need to
describe the infinite point process Q. by the local position measurements
are the same as for leaving the Fock space by passing over to infinite
systems (Ref. 2, Chapter 1, §1).

Let @ be an arbitrary, but in the sequel fixed, locally normal state on
. As above, we denote for each 4€B by ,w the restriction of w to ,.of
and by ,p the density matrix on .# related to ,w. Since ,o/ and ./, are
isomorphic, there exists a normal state w, on &/, and a density matrix p ,
on .#, such that

w(A)=Tr(p A(=Tr[ ,0(JA)] = s0(,J4)=w(,JA4) Ae s,
(3.1)

[ 4+J was defined by (2.13)]. Here Tr, denotes the trace in «/,. For all
4B we define a point process Q , by

OQuY) = 04(0yrmp)  YeM (3.2)

def
From (3.2) one easily gets for all fe 4, .#°

EQAf:a)A(Df):Aw(AJDf):w(AJDf) (3.3)

where

Eo, /= | Qaldo) /(o)

is the expectation of f with respect to the point process Q ,.
The Q, is a point process of a special type. We have the following
result.

Proposition 3.1. Let 4 e %B. The point process Q , defined by (3.2)
is a finite X“-point process concentrated on M ,.

Proof. There exists an orthonormal system (¥);c, of elements
from #, and a sequence (0)jess 2,20, 3., 2,=1, such that p,=
2jer®{¥;, ) ¥;. Having this representation of p ,, we get, for all Ye .#,,
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QY)=Tr, (p,0y)
= Z (xj(ylja OYYIj)

jedJ
=[  Fdo)rde) ¥ ¥ (0)?
My jed
=%y(0) Z *; |Tj(0)|2
jeJ
- 1 n 2
=+ Y | A6 Y w1946,
n—1 104 jed

Wakolbinger and Eder (Ref. 14, Theorem 2.13) proved that for a finite
point process Q to be 2 it is necessary and sufficient that there exist real
functions 4, on R*, n>1, i,e R, such that

; I -
0N =10} o+ 3, — [ A% 1(0,0) ()
n=1 :
Consequently, putting

Au(x") = Xrlx") 3, 0 |PLS )% m21

jed

Ao= 3. a; | ¥{o)}?

jeJ

we get that 0, is a X“-point process.
Now, we define for each 4 € B a probability measure ,Q on [M, ,I]
by

AQ(Y)=04v,Y), Ye , M (34)

Since M= {v;'Y: YeIM,}, the probability measure ,Q is well-defined.
From (3.1) and (3.2) we get

AQ(Y):(UA(OVA y) = 40(4JO,, y) = 40(0y)=w(0y) Ye ;M (3.5)

Now, for all 4, A’ € B such that 4 = A" we have ;M = , M, and because of
the quasilocal structure, ,.o7 = ,.o/. So, for each Y e ,9MM we have O, ¢ ,.o7,
Oye 4. From ,0(0y)= ,0(0y) [ =w(0,)] we conclude that

4Q2(Y)=,0(Y), A, 4'€eB, AsA, Ye, M (3.6)

This allows us to prove the following result:
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Theorem 3.2. There exists exactly one point process Q,, such that
0,(Y)=w(0y), AeB, Ye , M (3.7)

Proof. Let n be a natural number, 4,€®B, k;eN, for je {1,.., n},
A;0A;= for i # j. There exists a set 4 € B such that A24, U --- U A,.
We set

of the set A2A4,u ---A,. It is easy to check that the probability dis-
tributions p'~* on N” satisfy the following compatibility conditions:

(i) For all permutations (i,,..., i,) of (1,..., n) and for all k,,..., k,eN
the following holds:

(L gy Ky 1) = pA el (K e K3, 1)
(i) For all k,..,k,_, €N we have

(v) For all sequences (A4,,v ---uAd,,, ), of finite unions of
pairwise disjoint sets from B decreasing monotonically toward F we have

lim p/iAemn([0,.., 0]) =1

a-— o0

In Ref 10, Theorem 1.3.5, it is shown (in analogy to the classical
Kolmogorov theorem on finite-dimensional distributions) that the con-
ditions (i)—(iv) are sufficient (and necessary) for the existence of exactly one
point process Q, with the property

Qw({(DGM: (P(Al)::kle“-a (p(An):kn})

forall n=1, k.. k,eN, A,,.,4,€B, 4,n A, = for j#k.
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We thus finally get that there exists a unique point process Q,, such
that Q,(Y)= ,0(Y) for all Y of the form

{(PEM: (p(Al):klv"’ (P(An):kn}

where A 24,0 ---u4,, A, 4,€B. Since for each 4B, M is generated
by sets of this type, we get (3.7).

Each position measurement can be expressed by a multiplication
operator O,, where g is a (real-valued) measurable function on M.
Now, a position measurement in J,.g 4% corresponds to a position
measurement in some 4/ and thus to a multiplication operator O, e ,.o/.
Because of Corollary 2.13, g is a (real-valued) ,¥i-measurable function
from .#°. From (3.7), (3.4), and (3.3) one easily concludes that for all
Ae®B and O, e o/

o(O,)=E 0g=Ey g

Thus, for each position measurement O, the expectation w(D,) is equal to
the expectation of g with respect to the point process Q. On the other
hand, Q, is uniquely determined by all of the integrals E, g,
O,eU s 4 (g real-valued). This allows an interpretation of Q,, as the
distribution of outcomes of position measurements of a quantum system
being in the state w. That is why we will call Q,, the position distribution
of w.

From (3.7), (3.5), and (3.4) we conclude that for all 4B and Ye (M

0,(Y)=,0(Y)=0,(v,Y)

Thus, from Proposition 3.1 we have that the position distribution Q.
is locally a finite X“-point process concentrated on [M ,, M ,]. From
Theorems 2.11 and 2.13 in Ref. 14 we know that each X“-point process is
locally a finite 2“-point process.

On the other hand, we have the following result:

Theorem 3.3. Let Q be a (possibly infinite) 2°-point process.
There exists (at least one) locally normal state w on &/ with position
distribution @, = 0, i.e., such that

w(0y)=0(Y), Ye, M AeB

Before we prove this theorem, we will introduce an important notion from
point process theory.
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Definition 3.4. Let Q be a point process. We define a measure
Cs? on [Mx M, M@ M] characterized by

CENY X Y))=[ QW0) T 1@ tnlo—0), Y. Y,eM  (39)
(AR
peMl

Here ¢ = ¢ means that ¢ — @ e M, ie., ¢ is a subconfiguration of ¢. The
measure C5° is called the compound Campbell measure of Q (cf. Ref. 8,
Chapter 12.3). We collect some properties of C{5°:

Lemma 3.5. Let Q be a point process. Then:
(i) Cg* is o-finite.
(ii) C%°)is concentrated on M/ x M.
(iii) CSIM xM,)=0(M,_,)forall AeB, A'eR, AnA' =
(iv) Cg({o}x(-))=0.

(v) If Qisa 2*point process, then there exists a Z-point process P
such that C%°) < Fx P.

Proof. For a proof of (i}-{iv) sce Ref 8, Chapter 12.3. We will show
(v). Let Q be a Z*-process. Then for all n>>1 there exists a Z“-process P,
such that CY)</"x P, (where I” denotes the Lebesgue measure on R™)
(Ref. 14, Theorems 2.9 and 2.10). Let P be a 2*-process dominating all P,,,
neN (Py=¢) (for instance take P=), _\«,P,, where «,>0 for all
neN, ¥, cna,=1). We thus get for all n> 1, C) <" x P. Setting CY’ = Q
and using the notation (2.7), we obtain for all Y,, Y,eM

C(QOO)(YI X Y,)= Z C§3°°’[(Y1 NM,)xY,]

neN

1
= ¥ [ COWIE, 01) 1,06, xto)

dcy)
=[P 3 a6
=] Pudg)| Fidg) 5@, 0) (3.10)

where we have set

dcy
2__(x" ¢), nxl, x"eRY peM (3.11)

Péﬂ =
KQ( gca(p) d(lnXP) 2

822/47/5-6-24
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and

Q( ), peM (3.12)

KQ(D p)= 4P

This ends the proof.

Lemma 3.6. Let Y be a X<-point process, and let P and R be
2“-point processes such that

CP'<FxP, Ce' < FXR (3.13)

Then, denoting by [, and k3 (versions of) the Radon-Nikodym derivatives
dC§?/d(Fx P) and dC¥”)/d(FxR), resp., we have for all 4, A4'e®B,
AnAd' =g

KS(QH + @2, 93) K5(0, 93) = KS((/M, P2+ @3) K§(92, @3) (3.14)

FxFxR-aa. (¢, ¢,, @3) from M, xM, xM . [The existence of P
and R with (3.13) follows from Lemma 3.5, (v).]

Proof. We fix A, A'eB, AnA"=¢, and set A" =(Au A")". For
each measurable function f@ M, x M, xM,. —[0,0) we get, using
Lemma 2.7 and Lemma 3.5, part (iii),

| (Fx Fx R)(d[0s, 93, 931)
Maox Mg x My
XKp(@1+ @2, @3) K50, 93) f(@4, 93, ¢3)

-

Maoa

= Fp) | Pdey) <801, 9:) (91,01, 92)

Maoa My

Fdpy) | Rdps) k500, 02) k501, 02) /(01,5 01,5 02)

= [ CEdLo1> @21) Haro (91) Lari(92) /(1,5 01,45 €2)
= [ 0W0) (0.4, 9.4 0.4°)
=[0(0) T 100 Xaal0 = 1) S04, (0 = 014 (9= 91) 1)

(i R=y]

= [ Pdo) |  Fidpy) k@1, 9) X @) S (01> 0.0, 0.0)
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= [ Fdg) [ Pd0) T Har,(02) Wor, 0 — 92)
My

[FX=R]

xkg(@1, @) f@1, 02, 0 — @3)

=], Fag)| o[ Ros) ko 0)

My
x KE(C/M, @+ 93) [, 02, @3)
This proves (3.14).

Proof of Theorem 3.3. Let Q be a X°point process, and let P and R
be Z¢-processes with (3.13). Again we denote by x/ and x§ (versions of)
the Radon-Nikodym derivative dCy°)/d(Fx P), resp. dC3°/d(Fx R).
Without loss of generality we may assume k;(¢,, ®,)=0 for all
@, 0, € M. We put

Py @)= [kb(01, 02)1"% @1, 06 M (3.15)
and for all A1eB
Yo=Y @) X, () Xar(@)s peM (3.16)

First we will prove that for all 4B and P-a.a. ¢ (and thus for Q-a.a.
@) we have ¥, e./,. Indeed, from Lemma 3.5, part (iii), we get

| Pdg) | Fdp)|¥36)°

=] Pp)| F@6) ki@, 0)
= CY M x M i) = Q(M) =1 (3.17)

Consequently, for all 4B and P-a.a. ¢, | 'PQH < 0. Thus, for all A€ B, by
Aw(A):JMAc P(dp) (¥, 0, A0y, 1), Ae s/ (318)
there is defined a positive linear functional on ,«/. From (3.17) we further
conclude
)= PUp) (¥, #H=CEM M) =1

Consequently, for each 4 e B there is defined a state on ,.o7.
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We will prove that all states ,® are normal ones. We fix 4 € 8. There
exists a sequence of (finite rank) projectors (4,),.; in £, such that
(0<)A,<A,,,forall n>1 and 4, converges o-weakly to 1 .

This implies

lim (¥, 4,%5)= (¥, ¥,), P-aa.¢ (3.19)

n— oo

By Lebesgue’s dominated convergence theorem, we get from (3.19)

lim qo(,J4,)=|  Pdg) (¥, ¥4 =1

n— M g

Because of the isomorphism between ./, and ,</, we obtain, using
Theorem 2.6.14 in Ref. 1, that ,w is a normal state on ,.«/.

We still have to prove compatibility of all states ,w, ie., we have to
show

Lo(d)= go(d), A, A'eB, AcA, Ae o (3.20)

Wefix 4, A'eB, A=A, and Ae , .

Using Lemma 2.7, Lemma 3.5, part (iii), Lemma 3.6, and the fact that
0,,,A0,, . is isomorphic to 0,,,40,,®1 ,. ,, we get the following chain
of equalities:

vo(A)=  Pdo) | FAR)Ik5(&, 0)]" 01, A0, [K5(9. 0)]"

e M4

JMA,CR(d%) kB0, 02) [ Fldga) [ Fldoy)

Mga My

X [KS((PI + @2, 93)]"? OMAIAOM[[KZ((PI + 0,5, 03)]"

=, Rips) |

M gna

Fdg,) |  Fldg))

x [k3(0, @3) ’CS((Pl + @2, €03)]1/2

X 0, A0 py [k (o, (P3)]1/2[K§(€01 + @2, 03)1?

=, Ry |

M g4

X [KZ(%, @3+ (Pz)]l/z OMA,AOMA/[Kﬁ(QDz, (Pz)]l/z

Fdg;) | Fldg,) (02, 02)

X [K§(<P1, @3+ P2(17?
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=, Ry [~ Fdo:)xkon0) | Fldo)

M 4

X [k§(@1, @3+ ©3)1Y2 040, A0y [k5(01, @3+ 02)]?

=] Rldes) |  Fldgx) x50z 92) | Fldey)

ac Mana My

x W£3+¢2(¢1)(OMAA0MA (p3+(p2)((pl)

= fM C P(do;) JM Fdo,) Yo (004,40, P2 )e))

4

=[ PN}, 0,,40,,%%) = 0(4) (3.21)

This proves (3.20). We thus have that there exists a locally normal state w
on o such that

w(4)= ,w(A), AeB, Ae o
Finally, using the identity
Ou,0y04,=0,,y, AeB, Ye M
we get for all /e B and Ye M

w(Oy)= 40(0y)
=] ) 0,0

[ Pldg) | Fd$) k(9. 0)

va Y

=[0W@p) T %o rl®) tasilo —9)

[ A=R
peMy

— [ 0(d9) X0, 19.4) Xos, 0.4
= [ 0(dp) 1.,(9.0)

= [ 0(do) xr9)=0(Y)

This shows that Q =0, and ends the proof of Theorem 3.3.
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Summarizing the results, we can state that to each locally normal state
w on &/ there corresponds a uniquely determined point process Q ,—the
position distribution of w (Theorem 3.2). This point process is locally a 2*-
process. It is still an open problem whether there exist (physically
meaningful} locally normal states for which the position distributions are
not X*-processes.

If the locally normal state w is a normal one [more precisely, if it has
a normal extension to #(.# )], then its position distribution Q,, is a finite
Ye-process. On the other hand, to each finite 2°-process ¢ we can relate a
normal state w such that Q= Q.

Many examples are given in Ref. 5. For instance, one can define
infinite Glauber states and prove that the position distributions of such
states are Poisson point processes (cf. Ref. 5, Chapter 7).
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